

Biomass Heating for Horticulture

Laying the foundations of a successful project

The building blocks

Your starting point could be

- I use 7,000,000 kWh of natural gas
- So I need 2,100 tonnes of wood chip

Another starting point could be

- My current boilers are 5 MW
- So I need a 5 MW biomass boiler

Weekly heat profile

Max. demand

- 5.0 MW
- Winter's day
 - Total heat demand 69 MWh
 - 2.9 MW boiler 24 hrs
- Spring day:
 - Total heat demand 40 MWh
 - 1.7 MW boiler 24 hrs
- Heat stores are the key to:
 - Optimal boiler sizing
 - Pain-free operation

Rules of thumb

- $-200 \text{ m}^3 \text{ store}$
- Maximum temperature = 90°C
- Minimum temperature = 45°C
- MWh = Size (m^3) x Tdiff x 4.18 3,600
- Storage capacity = 10 MWh

Heat store & boiler size

So, what's the answer?

- Site specific
- Look at available data and do feasibility

Optimum boiler size:

- ⅓ of peak heat demand
- 1 MW for RHI!

Heat store size:

- − 50 m³/Ha is plenty
- Practical limit 150 m³/MW boiler
- Satisfy 80 90% of annual heat demand (ignoring CO₂ enrichment)

Impact of CO₂ enrichment

- Current non-natural gas heat sources
 - Do not provide CO₂ for greenhouse enrichment
 - As a rule, pure CO₂ is too expensive

Impact of CO₂ enrichment

CHP & biomass boilers?

• CHP

Almost 2 x CO₂ per
kWh of heat
compared to a boiler

Impact of CO₂ enrichment

	Fossil fuel	100% biomass	Optimised (no CO ₂ req't)	Optimised for RHI (with CO ₂ req't)
Boiler size	5 MW	5 MW	1.7 MW	1 MW
Total fuel used (MWh)	7,000			
Heat store size (m³)	n.a.	50	150	125
% from biomass	0	100%	80%	40%
Tonnes of wood chip p.a.	0	2,100	1,700	850

Heat demand

- Impacts on every area of a biomass boiler installation
- The more data the better (within reason)
 - Read your meters every week
 - Better still, store / export data from your greenhouse computer
- Maximise financial benefits
- Minimise operational problems

Energy efficiency still rules

Do not use cheap heat as an excuse for wasting heat

- Energy efficient greenhouse will have lower peak heating demands
- Smaller biomass boiler required
- Less capital
- Faster payback

Any questions?

