

PE 013 **Refrigerant based dehumidification**

Tim Pratt Farm Energy Centre

Red ROOFS NUTSERY Ltd Specialist Baby Plum Tomato Grower

How do they work?

Simple energy costs

Cost of electricity	Cost of heat (CoP of 4.0)	Equivalent cost of gas (85% efficient boiler)
9 p/kWh	2.3 p/kWh	1.9p/kWh (56p/Therm)
6p/kWh	1.5p/kWh	1.3p/kWh (37p/Therm)

But there's more....

A bit more physics

• What happens when the vents are open?

- Lose the energy in the water vapour (latent heat)
- Lose the energy in 20°C air that is replaced with say 10°C air (specific heat)
- This adds 1 to the CoP
 - New CoP is 5.0

Cost of electricity	Cost of heat (CoP of 5.0)	Equivalent cost of gas (85% efficient beiler)
9 p/kWh	1.8 p/kWh	1.5p/kWh (45p/Therm)
6p/kWh	1.2p/kWh	1.0p/kWb (30p/Therm)

- 4 dehumidifiers in 6,000 m²
- Each unit
 - Consumes 10 kW electricity
 - Removes 45 litres/hr of water

Energy savings

• Heat use comparison

Energy savings

• Financials

- Electricity 6.0p/kWh (bit kind)
- Gas 67.5p/Therm (fair)
- 1 Ha

To end of May 2013

- Conventional block used 255 kWh/m² of heat
- Dehumidifier block used 202 kWh/m² of heat
- Saved 53 kWh/m² of heat / 62 kWh/m² of gas
- •
- Used 13 kWh/m² of electricity
- Season-long CoP of 4.8

Optimise the production with the Drygair concept

- Plant model more generative as traditional plant model.
 - Remove more leaves.
 - Arrange a more generative climate as in the traditional compartment.

Optimise the Drygair concept with the correct plant model

- The Drygair concept have a positive effect on the reduction of the botrytis.
 - The humidity can be in a higher range: 80–85 %.
 - The more generative plant model can handle the higher humidity without a lost of yield.

A bit of optimism

Assume the yield reduction can be resolved

- Capital cost: £130–£150k per Ha
- An energy saving of £30,000 per Ha seems possible
- Simple return in 5 years

• And

What if we can use fewer breathable screens as a result?....